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Abstract. The Bethe-Salpeter (BS) amplitude for πN scattering is evaluated at the off-mass-shell points
corresponding to the Low Energy Theorems (LET) based on PCAC and current algebra. The results
suggest a way of maintaining constructing between BS equation and LET.

PACS. 25.80.Dj Pion elastic scattering – 11.30.Rd Chiral symmetries – 24.80.+y Nuclear tests of funda-
mental interactions and symmetries

1 Introduction

The formulations of πN scattering can be divided into
two approaches. On the one hand, we have the Effective
Field Theory (EFT) approach where the emphasis is on
preserving the symmetries of QCD. This is achieved by
the expansion for the amplitude in powers of the pion
mass or external momenta divided by a typical QCD cut-
off of ≈ 1 GeV. For the πN system, the commonly used
EFT is Chiral Perturbation Theory (ChPT) [1] which re-
sults in an off-mass-shell amplitude that is consistent with
the Low Energy Theorems (LET). These LET are based
on current algebra and PCAC. On the other hand, we
have the more traditional approach of using the two-body
scattering equation (e.g., the Bethe-Salpeter equation) in
which the potential is based on s-, t-, and u-channel pole
diagrams derived from a chirally invariant Lagrangian. In
this case, unitarity is the main uniting feature which al-
lows the examination of πN scattering at higher energies.

2 The Bethe-Salpeter amplitude

With the advent of solutions to the Bethe-Salpeter (BS)
equation for the off-mass-shell πN amplitude [2], it is now
possible to compare the results of the traditional approach
based on two-body scattering, with the LET. Here we will
present solutions to the BS equation based on a potential
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derived from the chirally invariant Lagrangian [2]:

Lint =
gπNN

2mN
ψ̄Nγ5γ

µτ · ∂µπψN

+
fπN∆

mπ
ψ̄µ

∆(gµν + x∆γµγν)TψN · ∂νπ + h.c.

+gρNN ψ̄N
1
2
τ ·

(
γµρµ +

κρ

2mN
σµν∂µρν

)
ψN

+gρππρµ · (∂µπ × π)
+gσNN ψ̄NψNσ

+
gσππ

2mπ
σ∂µπ · ∂µπ . (1)

The tree level diagrams that contribute to the potential
include the s- and u-channel diagrams with nucleon and
∆ poles, and t-channel diagrams with ρ and σ poles. To
solve the four-dimensional BS equation, we have intro-
duced form factors for each of the vertices in the La-
grangian. Here we considered two classes of form factors

fαβγ(p2α, p
2
β , p

2
γ) = fα(p2α) fβ(p2β) fγ(p2γ) (type I) (2)

and

fαβγ(p2α, p
2
β , p

2
γ) = fπ(p2π) (type II) , (3)

where

fα(p2α) =
(
Λ2

α −m2
α

Λ2
α − p2α

)nα

. (4)

In the above, mα and Λα are the mass and cut-off associ-
ated with the hadron α. The parameters in the Lagrangian
are adjusted to fit the s- and p-wave scattering data up to
pion laboratory energy of 300 MeV. In fig. 1 we present a
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Fig. 1. The S and P wave phase shifts for the form factors type I (solid line) and II (dashed line), the data is SM95 [3].

fit to the data for the form factors type I and II (n = 4).
Similar fits are achieved for the form factors II (n = 2)
and II (n = 10). Here, the form factors determine the off-
mass-shell behaviour of the BS amplitudes. In this way
we can vary the off-mass-shell amplitudes when compar-
ing the results of the BS equations with those based on
current algebra and PCAC.

3 The Low Energy Theorems

The LET for πN scattering are based on current algebra
and PCAC. The latter is implemented by defining the pion
field, πa, in terms of the derivative of the axial vector
current, i.e. ∂µAa

µ = fπm
2
π π

a. This allows us to write
the πN amplitude in terms of the commutation relation
of the currents. In this way we can use current algebra to
determine the πN amplitude in the soft pion limit.

The πN amplitude with off-shell pion can be written as

T ab
πN = ū(p′)

{
T (+)δab + 1

2 [τa, τb]T
(−)

}
u(p) , (5)

where p (p′) is the initial (final) on-shell nucleon
momentum, and

T (±) = D(±) +
i

2m
σµνqµq

′
νB

(±) . (6)

Here the (+), (−) refer to isospin even and odd compo-
nents of the amplitude, and q (q′) are the off-mass-shell
pion initial (final) momentum. The amplitudes D and B

with the pion off mass shell are a function of ν, νB , q2 and
q′2, i.e. D(±) = D(±)(ν, νB , q

2, q′2) with ν = 1
4m (s − u)

and νB being the value of ν at the s-channel nucleon pole,
and s and u being the standard Mandelstam variables.
Current algebra and PCAC can impose constraints on
these off-mass-shell amplitudes. In particular, we can
write the isospin even amplitude with the nucleon pole
subtracted, i.e. D̃+(ν, νB , q

2, q′2) at three off-shell points.
The amplitude at Weinberg (W) [4], Adler (A) [5] and
the Cheng-Dashen (CD) [6] points are

D̃+(0, 0, 0, 0) = −σπN (0)
f2

π

, (7)

D̃+(0, 0,m2
π, 0) = 0 = D̃+(0, 0, 0,m2

π) , (8)

D̃+(0, 0,m2
π,m

2
π) =

σπN (0)
f2

π

+O(m4
π) + · · · , (9)

respectively. Here we observe that the amplitude at the
Weinberg and Cheng-Dashen points are opposite in sign,
while that at the Adler point is zero. Since the sigma-term
σπN (0) is a measure of chiral-symmetry breaking, i.e.

σπN (0) =
1
2

3∑
a=1

〈N(p)| [Q5
a, [Q

5
a,H]]|N(p)〉 , (10)

in the absence of any mechanism for chiral-symmetry
breaking, the πN amplitude is zero at all three points.
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Table 1. The coupling constants and masses for the optimum
fit to the data for different choices for the form factors. All
coupling constants are g2/4π.

I (n = 1) II (n = 2) II (n = 4) II (n = 10)

g
(0)2
πNN 1.80 4.23 4.68 5.98

f
(0)2
πn∆ 0.37 0.17 0.20 0.196

x∆ −0.11 −0.13 −0.24 −0.18
gρNNgρππ 2.88 2.67 2.63 2.80
κρ 2.66 2.18 2.03 2.15
gσππgσNN −0.41 0.86 0.39 0.48

m
(0)
N 1.34 1.18 1.14 1.11

m
(0)
∆ 2.305 1.495 1.492 1.435

mσ 0.65 0.88 0.62 0.64

ΛR
π 1.22 0.874 0.868 0.822

∆π 1.3% 2.47% 2.51% 2.79%

Table 2. The BS amplitude at the Adler [5], Weinberg [4]
and Cheng-Dashen [6] points in units of m−1

π for different form
factors. Also included are the σ-term σπN (0) and the isospin-
even S-wave scattering length.

Model A W CD σπN (0) a+

I 0.366 0.355 0.379 23.8 −0.025
II (n = 2) 0.0949 0.102 0.106 6.64 −0.05
II (n = 4) 0.0411 0.0462 0.0494 3.10 −0.048
II (n = 10) 0.0180 0.0218 0.0259 1.62 −0.049

4 Results

To examine the variation in the off-mass-shell BS ampli-
tude when comparing with the results from the LET, we
have considered four possible form factors for our poten-
tial. In table 1 we have the parameters that give the op-
timum fit to the data up to pion energy of 300 MeV for
the form factor types I (n = 1), II (n = 2), and II (n = 4)
and II (n = 10). Also included in the table are the equiv-
alent cut off mass for a monopole ΛR

π , and the difference
in the form factor at the pion pole and at q2 = 0, i.e.
∆π = 1 − fR

π (0). Here, R refers to the fact that these
quantities are calculated for the renormalised form factor.
From the table we observe that the dressing of the nucleon
and ∆ is substantially more for type-I form factors than
is the case for type-II form factors. At the same time the
type-I form factors give a value for ∆π that is closer to
the commonly accepted value of 3% from the Goldberger-
Treiman relation.

In table 2 we present the off-shell amplitude resulting
from the solution of the BS equations at the Adler (A),
Weinberg (W), and the Cheng-Dashen(CD) points for dif-
ferent choices for our form factor. Also included are the
values for the πN σ-term σπN (0) and the isospin even
scattering length a+. Here we observe that:

1. The off-mass-shell amplitude is sensitive to the choice
of cut off form factor, and in particular, model I gives
a larger σ-term than model II.

2. The amplitudes at the three off-mass-shell points are
approximately the same. This is in contrast to the
fact that the amplitudes at the Weinberg and Cheng-
Dashen points are equal and opposite in sign.

3. Finally, the amplitude at the Adler point is not zero.

To understand the difference between the amplitude re-
sulting from the solution of the BS equation and the LET,
we first examined the Born amplitude for the πN po-
tentials considered. Here we found that the Born ampli-
tude at all three points is zero, consistent with the re-
quirement of chiral-symmetry conservation. (The σ-term
is a measure of chiral-symmetry breaking). This suggests
that the higher terms in the multiple-scattering series give
all the contribution to the amplitude at the three off-
mass-shell points. To examine the source of this chiral-
symmetry–breaking contribution, we have examined the
contribution of each term in the potential to the ampli-
tude at the Adler, Weinberg and Cheng-Dashen points.
This exercise revealed that the source of chiral-symmetry
breaking is the higher-order multiple-scattering t-channel
ρ exchange. In particular, it is the ρππ-term in the La-
grangian that gives rise to the symmetry breaking. Since
this ρππ Lagrangian is of the form gρππ ρµ · (∂µπ × π),
then the only time this term in the Lagrangian contributes
to chiral-symmetry breaking is when the external pion is
represented by π rather than ∂µπ. It is possible to re-
store chiral symmetry to the amplitude by introducing a
symmetric form for the coupling of the ρ to the π, e.g.
(∂µρν −∂νρµ) · (∂µπ×∂νπ) [7], which is equivalent on the
mass shell to the form employed in the present calculation.
The resultant amplitude would then satisfy chiral symme-
try. Chiral-symmetry breaking could then be introduced
in a controlled form via a non-derivative σππ coupling.

5 Conclusion

In the above analysis we have established that the Bethe-
Salpeter amplitude for a Lagrangian that satisfies chiral
symmetry is inconsistent with the Low Energy Theorems
of current algebra. The source of the disagreement is the
mode of chiral-symmetry breaking via the higher-order
multiple scattering of t-channel ρ exchange. This could
be overcome with the introduction of a symmetric ρππ
Lagrangian, and a mode of chiral-symmetry breaking that
is consistent with the LET.
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